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Laminar free convection in boundary layers near 
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In  this article the problem of describing free convection near either horizontal 
cylinders or vertical axisymmetric bodies with fairly arbitrary body contours is 
studied. The solutions of two, coupled, partial differential equations, for the 
temperature and stream functions, are represented by series which are universal 
with respect to body contours within a specified class of body shapes (e.g. round- 
nosed cylinders). The series appear to converge rapidly so that a minimum of 
computational effort is required, even for classes of body shapes which do not 
admit the usual similarity transformations. For either horizontal, circular cylin- 
ders or spheres the series converge faster than expansions of the Blasius type and 
one-term approximations compare favourably with some of the existing experi- 
mental data. 

1. Introduction 
Only a few studies of temperature-driven, laminar, free convection around 

submerged objects have dealt with the influence of the shape of the object. Of 
course, the asymptotic behaviour of the relationship between the Nusselt, Gras- 
hof, and Prandtl numbers can be ascertained from the differential equations 
alone at  large Grashof numbers and large or small Prandtl numbers (e.g. Morgan 
& Warner 1956; Lefevre 1957; Hellums & Churchill 1960). The relations are: 

Nu cc (Gr Pr)3 for Pr +a and Nu cc (Gr Pr2)f for Pr + 0. 

Moreover, the proportionality function, which depends on the shape of the object, 
can be obtained in an explicit form for large Prandtl numbers (Acrivos 1962). 
However, at  intermediate and small Prandtl numbers the effect of the body shape 
cannot be accounted for without a more extensive analysis. 

In  some cases where the body shape is simple (e.g. a vertical plate or cone), the 
partial differential equations describing the conservation of mass, momentum 
and energy can be reduced to two ordinary differential equations using similarity 
transformations. Numerical methods (Ostrach 1953) or the von K&rm&n- 
Pohlhausen integral method (Merk & Prins 1954; Braun, Ostrach & Heighway 
1961) have been used to define the effects of the Prandtl number. On the other 
hand, in instances where the body shape precludes the use of similarity trans- 
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formations (e.g. horizontal cylinders or spheres), integral methods (Merk & Prins 
1954) and series expansion methods similar to the Blasius series for forced con- 
vection have been used (Chaing & Kaye 1962; Chaing, Ossin & Tien 1964). In  al- 
most all of these studies the modus operandi has been to ascertain the effect of the 
Prandtl number given a body contour. An exception is the work by Braun et al., 
where the classes of body contours admitting similarity transformations were 
found. 

It is apparent that none of the techniques mentioned so far accounts for the 
effects of body shape in a general manner. Hence, in the analysis to follow, new 
independent variables and series representations of the dependent variables will 
be introduced which are ‘universal’ with respect to the body contour. The choice 
of independent variables and series expansions is patterned after the work of 
Goertler (1957) on forced convection, since, in addition to their universal charac- 
ter, the first term in Goertler’s series proved to be an excellent approximation for 
the flow around a circular cylinder at stations rather far from the stagnation 
point. Hence, this leads us to expect that the computational effort necessary to  
describe free convection around horizontal cylinders or spheres may be reduced 
to the order of magnitude of that required for the vertical plate. This economy 
would be of considerable importance in, for example, studies of free convection 
driven by both temperature and composition gradients since in this case there are 
five dimensionless parameters governing the phenomena. 

If interfacial velocity effects are ignored, then free convection driven solely by 
composition gradients in the fluid can be described by using an analogy with 
temperature-driven convection. These interfacial velocity effects, which may or 
may not be small, have been studied by Acrivos (1962) and will not he considered 
here. 

2. Development of basic equations 
We begin the formal development with the familiar boundary-layer descrip- 

tion of laminar, free convection around a submerged object. The surface of the 
object is assumed to be isothermal and the properties of the fluid surrounding the 
object will be taken as constants, excepting the density in the ‘buoyancy term ’. 
The equation expressing the conservation of thermal energy in terms of the 
dimensionless temperature and stream functions is 

Pr(@v@J-@x@v) = auV. (1) 

( 2 )  

The equation for the stream function @, for planar, two-dimensional flows, is 

@, @zv - @x @VY = X ( 4  @ + I4Jvv9 

while for axisymmetric, two-dimensional flows it is 

The equations are written in terms of the usual dimensionless and ‘stretched’ 
variables, and the subscripts denote differentiation with respect to the variable 
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indicated. If the characteristic length is denoted by L and distances along the 
surface by x1 and normal to the surface by x2,  then 

x = XI/& y = x2Gri/L, (4) 

where Gr denotes the Grashof number, gp(8, - 8,) L3/u2. The kinematic viscosity 
is 11, the coefficient of thermal expansion p, the temperature of the surface B,, the 
temperature of the fluid far from the surface Om, and g denotes the magnitude of 
the 'body force ' vector (gravity in the usual case). Similarly, the Prandtl number, 
Pr, is the ratio of the kinematic viscosity Y to the thermal diffusivity a, and 0 is 
the dimensionless temperature, (8 -  Om)/(8,- 8,). The sine of the angle between 
the body force vector and a normal to the surface of the object is X(x), while r is 
the dimensionless radius of revolution for axisymmetric bodies, a function of x 
alone. 

The stream function for planar, two-dimensional flows is defined in terms of 
the velocity components in the x1 and x, directions by 

(5) 
V U 

u1 = - Gr@v, u, = - - Gd$-,, 
L L 

and for axisymmetric flows by 

U v 
u1 = LrGr4$v, u2 = --Gd+,. 

L r  

The boundary conditions are: 
(a )  at the surface, y = 0, 

( b )  far from the surface, y + m ,  

0 = 1, @z = $u = 0, 

@ = $ , = O .  

It is understood that the model, as presented, embodies several implicit restric- 
tions. These are principally, that the surface is smooth enough and the Grashof 
number is large so that the boundary-layer equations are valid. 

Our first step is to transform (3) into a form similar to that for planar flows. 
Hence, the following va,riables are introduced (cf. Mangler 1948) 

1 
$0 = $7 

(9) 

In terms of these variables the equation for the axisymmetric stream function is 

(10) r2($: $2: - $2 $00) = X(2) o + r2$:0$. 

The boundary conditions and the equation for the temperature function, 0, are 
unchanged, except for the substitution of $ for @, 2 for x, etc. Henceforth, the 
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‘caret’ notation will be understood implicitly. Now, based on arguments similar 
to those discussed by Goertler (1957), we introduce the transformations 

5 = I* [ ~ ( z ) l ) d z  (planar flows), 

5 = IX [r(z)l-+ [ ~ ( z ) l i d z  (axisymmetric flows), 

0 

0 

?4x, Y) = ( W F ( C >  71, 
O(X,Y) = T(C,Y). 

The dependence of F([, 7) and T(5,y) on the Prandtl number is also to be under- 
stood implicitly. Using these transformations, ( l ) ,  (2) and (10) become 

1 
$C(F,q-J$Tq)-FTq = - Pr T 77’ (12) 

$ C ( F , J $ , - ~ F 7 q ) - F F , q + ~ K ( C ) ~ F ,  = T+F,,,, (13) 

(planar flows), 
1 1 C d S  

R(() = -+--- 
2 3S(C)dC 

2 3 S(C) 

where 

h’(5) = -+--- 1 1 5[r(C)I2 4f l / r2 )  (axisymmetric flows). 

The boundary conditions are 

T(C, 0) = 1, F(C, 0) = Fq(C, 0) = F7(C, ~ 0 )  = T(5,00) = 0. (15) 

Goertler’s ( 1957) terminology, of ‘ principal function ’ for K(E), will be employed 
here. We note in passing that the condition for the existence of similarity trans- 
formations is that the principal function be a constant. The principal function 
can be expanded as the following series 

where OL is a rational number. The numbers K O  and cc depend only on the class of 
the body shape, not on details of the contour. The analysis for the remainder of 
the terms in the expansion is straightforward and one finds: (1) for round-nosed 
axisymmetric bodies KO = 8, a: = Q ;  (2) for sharp-nosed cylinders KO = &, a = 1; 
and (3) for round-nosed cylinders KO = 3, a = 8. 2 

For the circular cylinder 

K(C) = $ - (&) (;+)*@ + . . . , (17) 

a result which will be used in a later section, where the results for the circular 
cylinder are compared with experimental data. 
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Now, having shown the form of the expansion for the principal function, we 
introduce the following expansions for the other dependent variables 

00 m 

F(%,T) = I= Fj(Y)P;”i, T(t.77) = z Tj(7)ta;”i. (18) 

(19) 

Ta+PrFoT; = 0, (20) 

j=O i=O 

In terms of the new variables we have 
(a)  for j = 0 F~+FoFI; -~KoF;F;+To = 0, 

( b )  for j  = 1, 2, 3... 

The boundary conditions are: 
(a)  forj  = 0 

( b )  for j = 1 ,2 ,3  

T’(0) = 1, Fo(0) = F;(O) = T,(co) = Fh(00) = 0, (23) 

(24) q(0)  = Fj(0)  = Fi(0) =  ti(^) = Fi(00) = 0. 
Equations (19) and (20), along with their boundary conditions, comprise the 
same system as that studied by Ostrach (1953) for the vertical plate (KO = $, 
a = 1). The succeeding systems of equations ( j  = 1,2,3,  .. .) are linear and, owing 
t o  the form of the equations, the coefficients in the expansion of the principal 
function (the K,’s) can be scaled out of the systems. For example, if new variables 
fo r j  = 1 are defined as 

then K,  no longer appears in the differential equation for j = 1. A similar pro- 
cedure is possible for the higher-order terms ( j  = 2,3,  ...), although the algebra 
is rather tedious. Thus, it is possible to describe free convection around all objects 
of a given class of body shapes in terms of ordinary differential equations in which 
the parameters particular to a body contour are absent. Hence, for a particular 
class of body shapes and specific Prandtl number the differential equations can 
be solved once and for all. Then the resulting solutions can be applied to any body 
contour within the class by simply assembling the series. Furthermore, as 
demonstrated in the next section, the series converge rapidly enough in some 
instances so that only a few terms need be calculated. Indeed, it will turn out that 
only one term is needed for the horizontal cylinder for most purposes. 

We close this section with a definition of the Nusselt number to be used later: 

Tl(7) = Kltl(7) Fl(7) = K1f1(y)7 ( 2 5 )  

d (heat flux density) (characteristic length) 
(thermal conductivity) (temperature difference) ’ NU = 

d 
Nu = -Gr*@,(O). or 
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3. Applications of the series 
I n  this section we shall present some results obtained from numerical solu- 

tions of a few of the equations developed in the previous section. These results 
are compared with experimental data taken from the literature and with 
results obtained by other methods. Of course the differential equations for the 
zero-order terms have already been solved by numerical methods to describe 
free convection near planar, sharp-nosed bodies and the results are in substantial 
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FIGURE 1. Temperature-driven free convection around a horizontal, circular cylinder. 
Dimensionless temperature against dimensionless normal distance a t  90' from the lower 
stagnation point. Experimental data of Jodlbauer, Pr = 0-7: 0, Gr = 7 x 1 0 5 ;  a, 
Gr = 1 . 6 ~  lo5; 0, Gr = 9-3x  lo4; A, Gr = 9 . 4 ~  I03. Series representation: - , one 
or two terms. 
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FIWJRE 2. Temperature-driven free convection around a horizontal, circular cylinder. 
Dimensionless tangential velocity against dimensionless normal distance a t  90' from the 
lower stagnation point. Experimental data of Jodlbauer, Pr = 0.7: 0, Gr = 7 x lo5; 
0, Or = 1.6 x lo5; 0, Gr = 9-3 x lo3;  A, Gr = 9.4 x lo3. Series representation: - -, 
one term; -, two term. 
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agreement with the existing experimental data (Schmidt & Beckmann 1930; 
Ostrach 1953). The transformations and series representations were chosen in 
order to describe, with a minimum of effort, free convection near objects having 
body contours which do not admit of similarity transformations. Hence, in order 
to test this facility, we first examine the results for circular cylinders. 

For Pr = 0.7, the derivatives of the zero- and fist-order terms, evaluated at  
the surface, were found to be Th(0) = -0.3702, Fi(0)  = 0.8593, T;(O) = 

- 0-03226K1 and Pi(0) = - 0-09149K1. Series representations of the velocity 
tangent to the surface and the temperature together with some experimental data 

0 1 2 3 4 5  6 7  
11 

FIGURE 3. Temperature-driven free convection around a horizontal, circular cylinder. 
Dimensionless temperature against dimensionless normal distance at 150' from the lower 
stagnation point. Experimental data of Jodlbauer, Pr = 0.7: 0, Gr = 7 x lo6; 0, 
Gr = 1 . 6 ~  lo5;  0, Gr = 9 . 3 ~  lo4; A, Gr = 9 . 4 ~  los. Series representation: - - , one 
term; -, two term. 
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FIGURE 4. Temperature-driven free convection around a horizontal, circular cylinder. 
Dimensionless tangential velocity against dimensionless normal distance at 150' from the 
lower stagnation point. Experimental data of Jodlbauer, Pr = 0.7: 0, Gr = 7 x lo5; 
0, Gr = 1.6 x 105; 0, Gr = 9.3 x 104; A, Gr = 9.4 x los. Series representation: - - , one 
term; -, two term. 
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by Jodlbauer (1933) for air are shown on figures 1-4. The agreement is satis- 
factory. Particularly significant is the fact that a one-term expansion represents 
the temperature field rather well a t  up to 150” from the stagnation point. The 
average Nusselt number (averaged over the perimet#er of the circle) is calculated 
as follows. Since, for the circular cylinder, 

= 0*298+0.004 = 0.302. 

When the characteristic length is taken as the radius, Jodlbauer’s data give an 
average value for N u  Gr-2 9 % higher. The numerical solution for a Prandtl num- 
ber of 1760 gave 2.84 as a one-term approximation for Nu G d ,  while the experi- 
mental value obtained by Schiitz (1963) was 2.83. The table shown below is a 
summary of the numerical results obtained for round-nosed cylinders, KO = 2, 
a = 3. 

P r  = 0.01 Pr = 0.7 Pr = 1000 
2 

-7 ----L 7-7 7-L- 7 

1.169 0.0593 0.8593 0.3702 0.1954 3.058 
q ( 0 )  -Th(O) F,”(O) -Th(O) Ft (0)  -Th(O) 

Further details are given by Saville (1965). 
Of course, as the Prandtl number increases the effects of the non-linear terms 

in the differential equations which necessitate the expansions decrease so that 
the agreement at high Praiidtl numbers is expected. However, as the Prandtl 
number tends to zero, the importaiice of the non-linear terms increases. Thus, it 
is expected that the error resulting from one-term approximations would increase. 
Nevertheless, a t  a Prandtl number of 0.01, the second term in the expansion for 
the average Nusselt number or shear stress was found to be less than 5 yo of the 
first term, in the case of the circular cylinder. These ’ correct’ions ’ may not always 
be small since the size of the ‘correction’ depends on the body contour for the 
particular body shape in question (i.e. T(c, 7) = To(7) + Kltl(ljl) 

Finally, we compare the one-term approximations developed here with one- 
and two-term expansions of the Blasius type, as developed for free convection 
by Chaing & Kaye (1962) and Chaing et al. (1964). For a Prandtl number of 
0-7 the following results were obtained for G G r - t :  for the cylinder 0.298 as 
compared with 0.370 and 0.31 7 with one- and two-term Blasius-type expansions; 
for the sphere 0.353 as compared with 0.458 and 0.358. 

It may be noted that the differential equations and boundary conditions for 
the zero-order terms in the Goertler representation are the same as for the Blasius 
representation; thus the difference at  this level is solely in the interpretation of 
the independent and dependent variables. The calculations for the higher-order 
terms have not been carried out to a degree which would determine whether or 
not the two types of series converge to the same limit. However, in the case of the 
circular cylinder, the ratio of the magnitude of the first-order term to the zero- 

+ . . .). 
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order term in the series for the average Nusselt number is 0.013 for the Goertler 
representation and 0.14 for the Blasius representation. As a consequence of this 
and the agreement with experimental data, one-term approximations of the 
Qoertler type appear to be the more accurate ones. 
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